
SQL Excluding Record sets
Posted At : July 14, 2011 9:45 AM | Posted By : Steve
Related Categories: SQL 

I was eating with another speaker at cf.Objective() (I am resolved to find a way to work my having
spoken at a conference into all future anecdotes) and an interesting SQL question came up: How to
delete everything except the first 1000 records. To my mind, this brought up a general class of
problems in SQL. Which is, returning results that exclude the result of a query.

With that in mind, let's look at a few of those.

Not IN

This is the approach most likely to work for an UPDATE or DELETE query. Let's take a look at an
example of getting all of the records in a table except the first 1000 records.

SELECT   LogID, LogDate

FROM   logs

WHERE   1 = 1

   AND   LogID NOT IN (

         SELECT      TOP 1000 LogID

         FROM      logs

         ORDER BY   LogDate

      )

This is pretty simple and effective. The nice thing to note here is that this is not a correlated
subquery, so it should execute pretty fast.

This can easily be applied to a DELETE query:

DELETE

FROM   logs

WHERE   1 = 1

   AND   LogID NOT IN (

         SELECT      TOP 1000 LogID

         FROM      logs

         ORDER BY   LogDate

      )

EXCEPT Queries

While this one isn't really useful for UPDATE and DELETE queries, it is still a handy tool to have in your
toolbox. I have found that most developers are familiar with UNION queries, but unfamiliar with its
close cousins EXCEPT and INTERSECT.

Here is an example of a UNION query.

SELECT      LogID, LogDate

FROM      logs

WHERE      LogName = 'Alpha'

UNION

SELECT      LogID, LogDate

FROM      logs

WHERE      LogName = 'Bravo'

Steve Bryant: SQL Excluding Record sets 

http://www.cfobjective.com/
http://en.wikipedia.org/wiki/Correlated_subquery
http://en.wikipedia.org/wiki/Correlated_subquery


ORDER BY   LogID

A UNION query returns all rows that match either the query above the UNION statement of the query
below it, so this would return a combination of results where LogName is "Alpha" and where it is
"Bravo". In this case, it would clearly be better to use a single query with LogName IN ('Alpha','Bravo'),
but the point is just to examine how these things work.

It is important to note that with UNION (and EXCEPT and INTERSECT) queries, the ORDER BY statement
has to be at the end and applies to the entire result set. You can't apply it to just one side of the
UNION operator. Also note that the column names and data types must match in both queries (though
aliases can be used to achieve the column name match).

An EXCEPT query work much like a UNION query except that it returns all rows in the first excluding
those that exist in the second query.

SELECT      LogID, LogDate

FROM      logs

WHERE      LogName IN ('Alpha','Bravo','Charlie')

EXCEPT

SELECT      LogID, LogDate

FROM      logs

WHERE      LogName = 'Bravo'

ORDER BY   LogID

This would return records only where LogName is "Alpha" or "Charlie". Again, a simple LogName IN
('Alpha','Charlie') would be superior for this particular example, but sometimes very complicated SQL
(especially hitting different tables) can provide scenarios where this is advantageous.

Not EXISTS

Even though they often involve correlated subqueries which can potentially drag down performance a
bit, I really love NOT EXISTS queries. They so often express just exactly what you mean and I love it
when my SQL is accurately expressive of my intent. Fortunately, I have found that for most situations
NOT EXISTS performs very well (your mileage may very, of course).

In this case, let's delete any users that haven't made any sales calls.

DELETE

FROM   users

WHERE   NOT EXISTS (

         SELECT   1

         FROM   salescalls

         WHERE   UserID = users.UserID

      )

Note that the "WHERE UserID = users.UserID" means that this is a correlated subquery which means
that the subquery is getting executed for every single record returned by the outer query (every row in
the users table, in this example). If that outer query will return a very high number of records (in this
example, if the users table has a lot of records) then this could be slow. If the outer query is returning
a relatively modest number of records, however, then the performance should be decent and the
expressiveness of this syntax is very convenient. Someone readying the query later should know just
want you intended - even if you forget to comment it.

This certainly isn't an exhaustive coverage of the topic, but I wanted to get these things down while I
was thinking of them.

Steve Bryant: SQL Excluding Record sets 


