
Relating Tables with Manager.cfc
Posted At : November 9, 2010 10:00 AM | Posted By : Steve
Related Categories: com.sebtools

Today we continue our quest to use com.sebtools to easily manage records and files in our example HR
application. So far, we have defined our data set with XML, gotten that definition into Records.cfc,
and consolated our multi-table application with ProgramManager.cfc. The last step wasn't necessary
for a multi-table application, but does make things nice.

What we don't have, however, is any interaction among our tables. We have Departments and
Employees, but no relationship between the two. For this example, an employee can work for one (and
only one) department.

There are a few pieces of information that are helpful for most of these sorts of relationships. We
would like to know the name of the department for every employee (and perhaps a boolean indicating
if that employee is in a department). We would also like to have the number of employees for any
given department and a boolean indicating whether or not that department has any employees.
Fortunately, Manager.cfc can provide all of this for one short line of code.

We can add a new field into the "Employees" table with an fentity="Department" attribute.

What Do We Do?

<field fentity="Department" />

Here is the resulting complete code for our HR.cfc file:

<cfcomponent displayname="HR" extends="com.sebtools.ProgramManager" output="no">

<cffunction name="xml" access="public" output="yes">

<tables prefix="hr">

 <table entity="Department" />

 <table entity="Employee" labelField="FullName">

 <field fentity="Department" />

 <field name="FirstName" type="text" Length="80" label="First Name" required="true" />

 <field name="LastName" type="text" Length="80" label="Last Name" required="true" />

 <field name="FullName" type="relation">

 <relation

 type="concat"

 field="FirstName,LastName"

 delimiter=" "

 />

 </field>

 </table>

</tables>

</cffunction>

</cfcomponent>

Note that the above code is all that we will have to write. The rest of the code examples are only
illustrative of what is representeded internally.

What Do We Get?

A call to Application.HR.Departments.getDepartments() would now return the following columns:

Steve Bryant: Relating Tables with Manager.cfc

http://www.bryantwebconsulting.com/blog/index.cfm/2010/10/19/Basics-of-Managercfc-xml
http://www.bryantwebconsulting.com/blog/index.cfm/2010/10/26/Getting-Data-to-Recordscfc
http://www.bryantwebconsulting.com/blog/index.cfm/2010/11/2/MultiTable-Applications-with-ProgramManagercfc
http://www.bryantwebconsulting.com/docs/com-sebtools/manager.cfm

DepartmentID: Integer primary key
DepartmentName: varchar
NumEmployees: integer of the number of employees for each department
HasEmployees: boolean indicating if the NumEmployees value exceeds 1

A call to Application.HR.Employees.getEmployees() would now return the following columns;

EmployeeID: Integer primary key
DepartmentID: Integer
FirstName: varchar
LastName: varchar
FullName: varchar
Department: varchar (the value of the DepartmentName for each employee's DepartmentID)
HasDepartment: boolean (a boolean indicating if the DepartmentID is associated with an existing
department record)

What Happens Internally?

If everything above is what we want, then it probably doesn't matter how it is achieved. If not, then
the internal representations matter so that we can over-ride built-in defaults to achieve what we do
want.

If you haven't already, read the Basics of Manager.cfc XML. This section won't make much sense
without it.

The "fentity" attribute (which is all we set initially in this example) will set a default value for the
"ftable" attribute of the same field. So, that field is effectively:

<field fentity="Department" ftable="hrDepartments" />

Any field with an "ftable" attribute will have the following default attribute values set:

type: "fk:integer".
name: The name of the primary key field for the referenced table (prepended with "Parent" if it
points back to its own table).
label: The value of the "labelSingular" attribute for the referenced table (prepended with
"Parent " if it points back to its own table).
listshowfield: The makeCompName() of the "methodSingular" attribute of the referenced table
(prepended with "Parent" if self-referencing).
subcomp: The value of the "methodPlural" attribute of the referenced table.

In this case, that would mean that this field would effectively look like this:

<field

 fentity="Department"

 ftable="hrDepartments"

 name="DepartmentID"

 label="Department"

 listshowfield="Department"

 subcomp="Departments"

/>

The important things to notice here is that the field automatically sets a usable default field name and
label.

Steve Bryant: Relating Tables with Manager.cfc

http://www.bryantwebconsulting.com/blog/index.cfm/2010/10/19/Basics-of-Managercfc-xml
http://www.bryantwebconsulting.com/docs/sebtags/sebfield-mult-value-fields.cfm

Whenever a field with "ftable" exists, Manager.cfc looks for a field with a name matching the
"listshowfield" attribute (from above - "Department" in this case). If it doesn't exist, then Manager.cfc
creates it as a label relation to the "labelField" of the related table ("DepartmentName" in this case).

It creates a "Has#attributes.listshowfield#" field ("HasDepartment" in this case) if it doesn't already
exist as a has relation for the previous field. This will be a boolean indicating if the employee is in a
department.

It creates a field using "Num" and the table's "methodPlural" attribute ("NumEmployees" in this case) in
the referenced table if it doesn't already exist as a count relation. This will indicate how many
employees are in each department.

It creates a "Has" field like above ("HasEmployees") as a boolean indicating whether or not each
department has employees.

So, our XML effectively looks like this:

<tables prefix="hr">

 <table entity="Department">

 <field name="NumEmployees" label="Employees">

 <relation

 type="count"

 table="hrEmployees"

 field="EmployeeID"

 join-field-local="DepartmentID"

 join-field-remote="DepartmentID"

 />

 </field>

 <field name="hasEmployees" label="Has Employees?">

 <relation

 type="has"

 field="NumEmployees"

 />

 </field>

 </table>

 <table entity="Employee" labelField="FullName">

 <field fentity="Department" />

 <field name="FirstName" type="text" Length="80" label="First Name" required="true" />

 <field name="LastName" type="text" Length="80" label="Last Name" required="true" />

 <field name="FullName">

 <relation

 type="concat"

 field="FirstName,LastName"

 delimiter=" "

 />

 </field>

 <field name="Department" label="Department">

 <relation

 type="label"

 table="hrDepartments"

 field="DepartmentName"

 join-field-local="DepartmentID"

 join-field-remote="DepartmentID"

 />

 </field>

 <field name="HasDepartment" label="Has Department?">

 <relation

 type="has"

 field="Department"

 />

 </field>

Steve Bryant: Relating Tables with Manager.cfc

http://www.bryantwebconsulting.com/docs/datamgr/labels.cfm
http://www.bryantwebconsulting.com/docs/datamgr/has-hasnot.cfm
http://www.bryantwebconsulting.com/docs/datamgr/aggregates.cfm

 </field>

 </table>

</tables>

What Next?

The above code illustrates how Manager.cfc automatically creates a handful of Datamgr relation fields
for us. Keep in mind, however, that many more types of DataMgr relation fields could easily be created
by hand as well.

So far, we have dealt with relatively ideal circumstances on our journey. The next few entries will deal
with slightly more real-world scenarios and we will take a look at how the com.sebtools package can
still help when your situation doesn't exactly match what Manager.cfc and its associated components
were built to handle.

Manager.cfc is part of the com.sebtools package which is open source and free for any use.

Steve Bryant: Relating Tables with Manager.cfc

http://www.bryantwebconsulting.com/docs/datamgr/relation-fields.cfm
http://www.bryantwebconsulting.com/docs/com-sebtools/

