
OO Principles: Composition (part 2)
Posted At : September 1, 2009 10:45 AM | Posted By : Steve
Related Categories: ColdFusion 

I don't "do OO" development in ColdFusion. I'm starting with that statement not to spark another
debate about whether to use OO in ColdFusion, but rather to clarify that while this post is about a
principle of object oriented development, you don't need to "Do OO" in order to learn, use, and benefit
from composition.

In the last "OO Principles" entry, I introduced composition. The examples that I used were barely
complicated enough to show some of the benefits of composition. Much more complicated than that,
however, and you can also run into some challenges. While these do not (in my opinion) overcome the
advantages of composition, they are still worth considering.

The two main challenges are large dependency chains and circular dependencies.

Large Dependency Chains

The most complicated example that I used in my previous entry had three components with the first
being passed to the second and the second being passed to the third. Even using just a service based
model (instead of the complexity of a full object oriented model) the number of components in use on
a real world application can grow far beyond this, as can the number of dependencies that you need to
keep track of.

For this, a dependency injection engine (or DI Engine) can be really helpful. In ColdFusion, the two
most popular options here are ColdSpring and LightWire. Brian Rinaldi recently wrote and excellent
Beginner's Guide to the ColdSpring Framework for ColdFusion. It is so good, in fact, that my
covering any more about the problems and solutions of dependency injection just seems redundant.

I would only add that, while ColdSpring is far and away the most popular option, keep in mind that it is
not the only choice. The concepts that Brian covers would apply to most DI Engines.

Circular Dependencies

If you discover that your Component A needs to know about Component B, but Component B also needs
to know about Component A then you have a circular dependency. You cannot have each pass the
other into the init method as one will have to exist before the other.

I have found that most circular dependencies can be avoided (by have a third component compose
both, for example). Those that can't will have to be dealt with outside of simply passing the
components into the init method.

Some developers compose components by way of "setter' methods:

<cffunction name="init" access="public" returntype="any" output="no">

<cfargument name="DataMgr" type="any" required="yes">

<cfargument name="Organizations" type="any" required="yes">

<cfreturn This>

</cffunction>

<cffunction name="setOrganizations" access="public" returntype="void" output="no">

<cfargument name="Organizations" type="any" required="yes">

<cfset variables.Organizations = arguments.Organizations>

</cffunction>

Steve Bryant: OO Principles: Composition (part 2) 

http://www.bryantwebconsulting.com/blog//print.cfm/blog/index.cfm/OO-Principles
http://www.bryantwebconsulting.com/blog/index.cfm/2009/7/30/OO-Principles-Composition
http://www.coldspringframework.org/
http://lightwire.riaforge.org/
http://www.remotesynthesis.com/
http://www.remotesynthesis.com/post.cfm/a-beginner-s-guide-to-the-coldspring-framework-for-coldfusion


<cfset Application.DataMgr = CreateObject("component","DataMgr").init(request.dsn)>

<cfset Application.Organizations = CreateObject("component","Organizations").init(Application.DataMgr)>

<cfset Application.Users = CreateObject("component","Users").init(Application.DataMgr,Application.Organizations)>

Note that most ColdSpring (and probably other DI Engines as well) support both constructor injection
(via the "init" method) or setter injection (as shown above).

Using composition in this way can open up new challenges (such as circular dependencies) as well as
new opportunities for organization and automation (using a Dependency Injection Engine, for
example). If you are using components, however, I would highly recommend using composition over
breaking encapsulation.

Steve Bryant: OO Principles: Composition (part 2) 


