
DataMgr List Relations
Posted At : November 26, 2008 7:30 AM | Posted By : Steve
Related Categories: DataMgr

DataMgr has had "list" relations for some time now, but I don't think I have yet done a good job of
explaining them. Hopefully I can correct that today.

(What is DataMgr?)

So, let's start with this example:

employees

EmployeeID RegionID FirstName LastName

1 1 Scott Summers

2 2 Jean Grey

3 3 Ororo Munroe

4 4 Peter Nicholas

5 1 Robert Drake

6 2 Henry McCoy

7 3 Kurt Wagner

8 4 Charles Xavier

groups

GroupID GroupName

1 Blue

2 Gold

Steve Bryant: DataMgr List Relations

http://www.bryantwebconsulting.com/blog/index.cfm/2007/7/10/announcing_datamgr_21

3 Red

regions

RegionID RegionName

1 North

2 East

3 West

4 South

This presents use with several options for using a "list" relation.

One to Many

 For example, I might want a list of all of the EmployeeIDs associated with a given region. For that, I
could use the following XML (see LoadXml):

<table name="regions">

 <field ColumnName="RegionID" CF_Datatype="CF_SQL_INTEGER" PrimaryKey="true" Identity="true" />

 <field ColumnName="RegionName" CF_Datatype="CF_SQL_VARCHAR" Length="50" />

 <field ColumnName="employees">

 <relation

 type="list"

 table="employees"

 field="EmployeeID"

 join-field-local="RegionID"

 join-field-remote="RegionID"

 />

 </field>

</table>

Alternately:

<cfset sRelation = {

 type="list",

 table="employees",

 field="EmployeeID",

 join-field-local="RegionID",

 join-field-remote="RegionID"

}>

<cfset DataMgr.setColumn(tablename="regions",columnname="employees",Relation=sRelation)>

This simply references the "EmployeeID" field from the "employees" table where the value of the field
indicated in "join-field-local" in the "regions" table ("RegionID") matches the value of the fields
indicated in the "join-field-remote" ("RegionID") in the "employees" table.

Now, because both the "join-field-local" and "join-field-remote" values matched, I could have just used
on "join-field" attribute as a shortcut, but I will stick with the more verbose syntax for clarity.

If I call DataMgr.getRecords("regions"), I will get back a query with an "employees" column that will
have a comma delimited list with the values of every "EmployeeID" from a row where the "RegionID" of
the "employees" table matches the "RegionID" for that record in the "region" table.

<cfset qEmployees = DataMgr.getRecords(tablename="regions")>

Steve Bryant: DataMgr List Relations

http://www.bryantwebconsulting.com/cfcs/DataMgr2.htm

RegionID RegionName employees

1 North 1,5

2 East 2,6

3 West 3,7

4 South 4,8

The table in the database wouldn't have a "groups" field, but it would still be part of the query
returned from that table by DataMgr.

Many to Many

I also might want a list of all of the GroupIDs associated with a given employee. For that, I could use
the following XML:

<table name="employees">

 <field ColumnName="groups">

 <relation

 type="list"

 table="groups"

 join-table="employees2groups"

 field="GroupID"

 local-table-join-field="EmployeeID"

 join-table-field-local="EmployeeID"

 join-table-field-remote="GroupID"

 remote-table-join-field="GroupID"

 />

 </field>

</table>

Or the Following setColumn() call:

<cfset sRelation = {

 type="list",

 table="groups",

 join-table="employees2groups",

 field="GroupID",

 local-table-join-field="EmployeeID",

 join-table-field-local="EmployeeID",

 join-table-field-remote="GroupID",

 remote-table-join-field="GroupID"

}>

<cfset DataMgr.setColumn(tablename="employees",columnname="groups",Relation=sRelation)>

Then a getRecords() call on the employees table can include the "groups" column.

<cfset qEmployees = DataMgr.getRecords(tablename="employees",fieldlist="EmployeeID,FirstName,LastName,groups")>

EmployeeID FirstName LastName groups

1 Scott Summers 1,3

2 Jean Grey 1,2

Steve Bryant: DataMgr List Relations

3 Ororo Munroe 2

4 Peter Nicholas 2

5 Robert Drake

6 Henry McCoy 1,3

7 Kurt Wagner

8 Charles Xavier 1,2,3

Here are what each attribute indicates:

type="list": indicates I want a list
table="groups": Indicates that I want my column to contain a value from a field in the "groups"
table
join-table="employees2groups": Indicates that this is a many-to-many relationship stored in the
"employees2groups" table
field="GroupID": Indicates that I want to get a value from the "GroupID" field of the "groups" table
local-table-join-field="EmployeeID": means that the "EmployeeID" field of the "employees" table
should match a field in the "employees2groups" table
join-table-field-local="EmployeeID": means the at the "EmployeeID" field of "employees2groups"
should match a field in the "employees" table
join-table-field-remote="GroupID": means that the "GroupID" field of "employees2groups" should
match a field in the "groups" table
remote-table-join-field="GroupID": means that the "GroupID" field of "groups" should match a
field in the "employees2groups" table

The fields marked with red balloons indicate the One-to-Many example, while the fields with the blue
balloons indicate the Many-to-Many example.

Since this list relation uses a join-table, the value of the field can be set when saving a record in the
"employees" table.

Steve Bryant: DataMgr List Relations

<cfset sData = {EmployeeID=3,groups="1,2}>

<cfset Datamgr.saveRecord("employees",sData)>

This will add or remove records to the "employees2groups" table so that the value of the groups field is
"1,2".

If I wanted to get a list of the "GroupName" fields from the "groups" table for groups associated with a
given user, I could do that as well.

<table name="employees">

 <field ColumnName="groupnames">

 <relation

 type="list"

 table="groups"

 join-table="employees2groups"

 field="GroupName"

 local-table-join-field="EmployeeID"

 join-table-field-local="EmployeeID"

 join-table-field-remote="GroupID"

 remote-table-join-field="GroupID"

 />

 </field>

</table>

<cfset qEmployees = DataMgr.getRecords(tablename="employees",fieldlist="EmployeeID,FirstName,LastName,groupnames")>

EmployeeID FirstName LastName groupnames

1 Scott Summers Blue,Red

2 Jean Grey Blue,Gold

3 Ororo Munroe Gold

4 Peter Nicholas Gold

5 Robert Drake

6 Henry McCoy Blue,Red

7 Kurt Wagner

8 Charles Xavier Blue,Gold,Red

Just like when saving the "groups" field, a value can be passed in to the "groupnames" field.

<cfset sData = {EmployeeID=3,GroupNames="Gold,Blue"}>

<cfset Datamgr.saveRecord("employees",sData)>

Note that this will only work if a join-table is included in the list relation.

Hopefully this provides a good explanation of list relations in DataMgr. If you have any questions, let
me know.

DataMgr is open source and free for any use. Download 2.2 Beta from the DataMgr page on my site.

Steve Bryant: DataMgr List Relations

http://datamgr.riaforge.org/
http://www.bryantwebconsulting.com/cfcs/#DataMgr

